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CALCULATION OF THE FORCE

OF INTERACTION OF TWO DROPS

IN A PLASTIC MEDIUM

UDC 517.958.539.3Yu. V. Pivovarov

In calculating the force of interaction of two spherical drops, the stress tensor component normal
to the drop surface is taken from the solution of the corresponding problem of the elasticity theory,
while the shear component is determined by the plastic properties of the medium. The results of
the calculations performed are demonstrated to be in good agreement with experimental data on the
character of drop motion and on the yield point of the medium surrounding the drops.
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Introduction. Stebnovskii [1], following his previous study [2], considered the behavior of drops of liquid
paraffin, sunflower-seed oil, and industrial oil in an alcohol–water solution of uniform density. He found that, if the
distance between two drops is of the order of their sizes, they approach each other until they merge into one drop,
independent of the system scale. The experimental setup used in [1] was insulated from external force and heat
effects. It was found in those experiments that the approach is observed only if both drops possess surface tension.

Stebnovskii [3] also assumed that, at the initial stage of the process of drop approach, the ambient medium,
which will be called the matrix as in [1], behaves as a solid that obeys Hooke’s law. This assumption, however, does
not explain the drop-approach mechanism, because the force acting on the drop from the side of the matrix is always
zero by virtue of equations of equilibrium inside the drop and constant surface tension on the drop boundary. It
is known from experiments, nevertheless, that water and, hence, the alcohol–water solution possess the yield point
k0 with the values in the interval from 10−4 to 10−3 Pa. The analysis performed in the present work shows that
the absolute values of the shear stresses on the drop boundary cannot exceed the value of k0, whereas there are
no constraints on the normal stresses. Therefore, the shear stresses have to be corrected, while the normal stresses
should be retained as they were in considering the matrix as an elastic medium. Then, if the force induced by the
normal stresses is sufficiently high to overcome the medium resistance due to shear stresses, then the drop starts
moving (in this case, the equations of equilibrium inside the drop become incompatible, and they should be replaced
by the equations of dynamics of the drop considered as an elastic solid). The force accelerating the drop acts until
the drop covers a certain distance of the order of one molecule size. (This conclusion is confirmed by the estimates
obtained in the present work.) After that, the molecular bonds, which made the matrix acquire the properties of a
solid, are broken, some volume around the drop becomes “liquid,” and the drop continues to move owing to inertia,
gradually decelerating owing to medium resistance until it stops completely. After a certain time, the matrix on a
certain part on the drop surface again becomes “solid,” which induces a force acting on the drop. The process is
repeated again.

A method of calculating the force acting on the drop from the matrix at the initial stage of drop acceleration
under the assumption that the entire volume occupied by the matrix is “solid” at the initial time (i.e., there are no
“liquid” zones) is proposed in the present paper.
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1. Determining the Fields of Stresses and Displacements in an Elastic Medium Containing
Two Drops Possessing Surface Tension. The first stage of calculating the force acting on the drop is solving
the following problem of the elasticity theory: we have to find the components T k

αβ, αβ ∈ {(RR), (Rθ), (θθ), (ϕϕ)}
of the stress tensors T k and the components uk

α (α ∈ {R, θ}) of the displacement vectors uk (the values k = 1
and 3 refer to the first and second drops, and the value k = 2 refers to the matrix) that satisfy the equations of the
elasticity theory and the following boundary conditions on the surface of the first drop:

T 2
RR − T 1

RR = 2γ/R0, T 2
Rθ − T 1

Rθ = 0,

u2
R − u1

R = 0, u2
θ − u1

θ = 0, θ ∈ [0, π], R = R0.
(1)

Similar conditions are imposed on the surface of the second drop. In Eqs. (1), R, θ, ϕ (R ∈ [0,∞), θ ∈ [0, π], and
ϕ ∈ [0, 2π)) is the local spherical coordinate system in the drop (the angle θ is counted from the axis directed from
the center of this drop to the center of the other drop), and R0 and γ are the drop radius and its surface tension
(the values of R0 and γ are assumed to be identical for both drops). An axisymmetric case is considered. The
first condition in system (1) defines the jump of the normal stresses proportional to the surface tension of the drop,
as it is given in the classical hydrodynamics. The second condition states the continuity of the shear stresses; the
third and fourth conditions define the continuity of the normal and shear displacements on the interface between
two media.

Let us construct an algorithm for determining the tensors T k and the vectors uk. For this purpose, we use
the alternating Schwarz method, which consists in reducing the problem in the non-canonical domain to a sequence
of problems in the canonical domains (external and internal domains of a sphere). The system of two drops is
replaced by an equivalent system consisting of the drop and the mirror plane passing through the middle of the
segment connecting the drop centers, orthogonal to this segment. This replacement is rather convenient, because
it allows only one drop to be considered. The fields of stresses and displacements generated by the other drop
correspond to the fields generated by the drop under consideration and reflected from the mirror surface.

The algorithm of the alternating Schwarz method can be formally presented as the calculation of the sums
of the series:

T k
αβ =

∞∑

ν=1

(T k,ν
αβ + T k,ν

αβ ref), αβ ∈ {(RR), (Rθ), (θθ), (ϕϕ)},

uk
α =

∞∑

ν=1

(uk,ν
α + uk,ν

α ref), α ∈ {R, θ}.
(2)

The set of the first terms in brackets in Eqs. (2) will be called the direct solution at the νth iteration, and the set
of the second terms will be called the reflected solution.

Let Kk, Gk, and mk denote the coefficients of volume compression, shear moduli, and Poisson’s numbers
(inverse Poisson’s ratios) of the drop material (k = 1) and the matrix material (k = 2).

The initial approximation, i.e., the direct solution at ν = 1, is constructed as the solution of the problem
of the elasticity theory with the boundary conditions (1) for one drop in an infinite ambient medium. The general
solution of the equations of the elasticity theory, which is independent of θ, has the form [4]

T 1,1
RR = T 1,1

θθ = T 1,1
ϕϕ = −4G1A

1
0

m1 + 1
m1

, T 1,1
Rθ = 0,

u1,1
R = −2A1

0

m1 − 2
m1

r, u1,1
θ = 0, T 2,1

RR =
4G2D

1
0

r3
, (3)

T 2,1
θθ = T 2,1

ϕϕ = −2G2D
1
0

r3
, T 2,1

Rθ = 0, u2,1
R = −D1

0

r2
, u2,1

θ = 0,

where r = R/R0 and A1
0 and D1

0 are arbitrary constants. Substituting this solution into the boundary conditions
(1), we obtain a system of equations for determining the constants A1

0 and D1
0 :

4G2D
1
0 + 4G1

m1 + 1
m1

A1
0 =

2γ

R0
, −D1

0 + 2
m1 − 2

m1
A1

0 = 0.
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Fig. 1. Schematic of the problem and coordinate systems.

The solution of this system has the form

A1
0 =

γ

2R0

m1

2G2(m1 − 2) + G1(m1 + 1)
, D1

0 =
γ

R0G2

1
2 + G1(m1 + 1)/[G2(m1 − 2)]

. (4)

Thus, the initial approximation is determined by Eqs. (3) and (4).
Let us transform the formula for D1

0. Using the equality [5]

Kk =
2Gk(mk + 1)
3(mk − 2)

(k = 1, 2), (5)

we obtain

D1
0 =

γ

R0G2

m2 − 2
2(m2 − 2) + (K1/K2)(m2 + 1)

.

Let the νth direct solution be known. We construct the νth reflected solution by introducing the following
notation: O is the center of the drop image with respect to the mirror plane P , O′ is the drop center, and A is
an arbitrary point. Let r, θ, 0 be the spherical coordinates of the point A with respect to the point O, and let r′,
θ′, 0 be the spherical coordinates of the point A with respect to the point O′, r1 is the distance between the drop
centers and α = π − θ′. The drop radius R0 is used as the measurement unit for the quantities r, r′, and r1. It
follows from Fig. 1 that

r = (r2
1 + 2r1r

′ cosα + r′2)1/2, cos θ =
r1 + r′ cosα

r
, sin θ =

r′ sin α

r
.

In the system (r, θ, ϕ), the orthogonal unit vectors ir′ , iα, and iϕ of the coordinate directions r′, α, and ϕ have the
following coordinates:

ir′ = (cosα′, sin α′, 0), iα = (− sinα′, cosα′, 0), iϕ = (0, 0, 1).

Here, we have α′ = α − θ. The stress tensor has the form

T =

⎛

⎝
TRR TRθ 0
TRθ Tθθ 0
0 0 Tϕϕ

⎞

⎠ .

The components of this tensor in the coordinate system (r′, α, ϕ) are calculated by the formulas

TR′R′ = ir′ · T · ir′ , TR′α = ir′ · T · iα, Tαα = iα · T · iα, Tϕϕ = iϕ · T · iϕ. (6)

The orthogonal unit vectors ir and iθ of the directions r and θ have the coordinates ir = (1, 0, 0) and
iθ = (0, 1, 0). In the coordinate system (r′, α, ϕ), the displacement vector components are written as

ur′ = ur · ir′ · ir + uθ · ir′ · iθ, uα = ur · iα · ir + uθ · iα · iθ, (7)
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thereby,

cosα′ =
r′ + r1 cosα

r
, sinα′ =

r1 sin α

r
. (8)

Substituting Eqs. (8) into Eqs. (6) and (7) and using the replacement θ′ = π − α, we obtain the sought
formulas for calculating the reflected solution:

T k,ν
RR ref = T 4−k,ν

RR − (T 4−k,ν
RR − T 4−k,ν

θθ )r2
1 sin2 (θ′/r2) + 2T 4−k,ν

Rθ r1 sin θ′(r′ − r1 cos θ′)/r2,

T k,ν
θθ ref = T 4−k,ν

θθ + (T 4−k,ν
RR − T 4−k,ν

θθ )r2
1 sin2 (θ′/r2) − 2T 4−k,ν

Rθ r1 sin θ′(r′ − r1 cos θ′)/r2,

T k,ν
ϕϕ ref = T 4−k,ν

ϕϕ ,

T k,ν
Rθ ref = (T 4−k,ν

RR − T 4−k,ν
θθ )r1 sin θ′(r′ − r1 cos θ′)/r2 − T 4−k,ν

Rθ (1 − 2r2
1 sin2 (θ′/r2)),

(9)

uk,ν
R ref = (u4−k,ν

R (r′ − r1 cos θ′) + u4−k,ν
θ r1 sin θ′)/r,

uk,ν
θ ref = (u4−k,ν

R r1 sin θ′ − u4−k,ν
θ (r′ − r1 cos θ′))/r, k = 1, 2.

The arguments of the left sides of Eqs. (9) are the variables r′ and θ′, and the arguments of the right sides of these
equations are the variables r and θ:

r = (r2
1 − 2r1r

′ cos θ′ + r′2)1/2, θ = arccos [(r1 − r′ cos θ′)/r].

It should be noted that the superscript in the right sides of Eqs. (9) at k = 1 has the value k′ = 4 − k = 3.
We put this superscript into correspondence to functions derived from the formulas of the external solution for the
drop and having the constants G1 and m1 of the material of the other drop.

Thus, the reflected solution is constructed.
Let us derive formulas for calculating the (ν + 1)th direct solution on the basis of the νth reflected solution.

For this purpose, we require the sum of the νth reflected solution and the (ν + 1)th direct solution to satisfy the
homogeneous conditions (1):

T 2,ν+1
RR − T 1,ν+1

RR = T 1,ν
RR ref − T 2,ν

RR ref, T 2,ν+1
Rθ − T 1,ν+1

Rθ = T 1,ν
Rθ ref − T 2,ν

Rθ ref,

u2,ν+1
R − u1,ν+1

R = u1,ν
R ref − u2,ν

R ref, (10)

u2,ν+1
θ − u1,ν+1

θ = u1,ν
θ ref − u2,ν

θ ref, r = 1, θ ∈ [0, π]

(the primes at the variables r and θ of the reflected functions are omitted).
The right sides of the first and third equations of system (10) are expanded with respect to the Legendre

polynomials Pn(cos θ), and the right sides of the second and fourth equations are expanded with respect to the
functions dPn(cos θ)/dθ [4]:

T 1,ν
RR ref − T 2,ν

RR ref =
∞∑

n=0

σν
nPn(cos θ), T 1,ν

Rθ ref − T 2,ν
Rθ ref =

∞∑

n=1

τν
n

dPn(cos θ)
dθ

,

u1,ν
R ref − u2,ν

R ref = −
∞∑

n=0

ξν
nPn(cos θ), u1,ν

θ ref − u2,ν
θ ref = −

∞∑

n=1

ην
n

dPn(cos θ)
dθ

.

(11)

The expansion coefficients are calculated by the formulas

σν
n =

2n + 1
2

π∫

0

(T 1,ν
RR ref − T 2,ν

RR ref)Pn(cos θ) sin θ dθ,

τν
n =

2n + 1
2n(n + 1)

π∫

0

(T 1,ν
Rθ ref − T 2,ν

Rθ ref)
dPn(cos θ)

dθ
sin θ dθ,
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ξν
n = −2n + 1

2

π∫

0

(u1,ν
R ref − u2,ν

R ref)Pn(cos θ) sin θ dθ, (12)

ην
n = − 2n + 1

2n(n + 1)

π∫

0

(u1,ν
θ ref − u2,ν

θ ref)
dPn(cos θ)

dθ
sin θ dθ.

Each of the functions that are united into a set determining the direct solution is also expanded into series
with an arbitrary value of r [4]:

T k,ν+1
RR (r, θ) =

∞∑

n=0

T k,ν+1
RRn (r)Pn(cos θ), T k,ν+1

Rθ (r, θ) =
∞∑

n=1

T k,ν+1
Rθn (r)

dPn(cos θ)
dθ

,

uk,ν+1
R (r, θ) =

∞∑

n=0

uk,ν+1
Rn (r)Pn(cos θ), uk,ν+1

θ (r, θ) =
∞∑

n=1

uk,ν+1
θn (r)

dPn(cos θ)
dθ

,

(13)

T k,ν+1
θθ (r, θ) =

∞∑

n=0

T k,ν+1
θθ1n (r)Pn(cos θ) +

∞∑

n=1

T k,ν+1
θθ2n (r)

dPn(cos θ)
dθ

cot θ,

T k,ν+1
ϕϕ (r, θ) =

∞∑

n=0

T k,ν+1
ϕϕ1n (r)Pn(cos θ) +

∞∑

n=1

T k,ν+1
ϕϕ2n (r)

dPn(cos θ)
dθ

cot θ, k = 1, 2, 3.

The functions at the summation sign are partial solutions of the equations of the elasticity theory if the
following equalities are valid [4]:

T 1,ν+1
RRn (r) = 2G1(Aν+1

n (n + 1)(n2 − n − 2 − 2/m1)rn + Bν+1
n n(n − 1)rn−2),

T 1,ν+1
Rθn (r) = 2G1(Aν+1

n (n2 + 2n − 1 + 2/m1)rn + Bν+1
n (n − 1)rn−2),

u1,ν+1
Rn (r) = Aν+1

n (n + 1)(n − 2 + 4/m1)rn+1 + Bν+1
n nrn−1,

u1,ν+1
θn (r) = Aν+1

n (n + 5 − 4/m1)rn+1 + Bν+1
n rn−1,

T 1,ν+1
θθ1n (r) = −2G1(Aν+1

n (n2 + 4n + 2 + 2/m1)(n + 1)rn + Bν+1
n n2rn−2),

T 1,ν+1
θθ2n (r) = −2G1(Aν+1

n (n + 5 − 4/m1)rn + Bν+1
n rn−2),

T 1,ν+1
ϕϕ1n (r) = 2G1(Aν+1

n (n − 2 − 2/m1 − 4n/m1)(n + 1)rn + Bν+1
n nrn−2),

T 1,ν+1
ϕϕ2n (r) = 2G1(Aν+1

n (n + 5 − 4/m1)rn + Bν+1
n rn−2), (14)

T 2,ν+1
RRn (r) = 2G2(−Cν+1

n n(n2 + 3n − 2/m2)/rn+1 + Dν+1
n (n + 1)(n + 2)/rn+3),

T 2,ν+1
Rθn (r) = 2G2(Cν+1

n (n2 − 2 + 2/m2)/rn+1 − Dν+1
n (n + 2)/rn+3),

u2,ν+1
Rn (r) = Cν+1

n n(n + 3 − 4/m2)/rn − Dν+1
n (n + 1)/rn+2,

u2,ν+1
θn (r) = Cν+1

n (−n + 4 − 4/m2)/rn + Dν+1
n /rn+2,

T 2,ν+1
θθ1n (r) = 2G2(Cν+1

n n(n2 − 2n− 1 + 2/m2)/rn+1 − Dν+1
n (n + 1)2/rn+3),

T 2,ν+1
θθ2n (r) = −2G2(Cν+1

n (−n + 4 − 4/m2)/rn+1 + Dν+1
n /rn+3),

T 2,ν+1
ϕϕ1n (r) = 2G2(Cν+1

n n(n + 3 − 4n/m2 − 2/m2)/rn+1 − Dν+1
n (n + 1)/rn+3),

T 2,ν+1
ϕϕ2n (r) = 2G2(Cν+1

n (−n + 4 − 4/m2)/rn+1 + Dν+1
n /rn+3).
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At k = 3, the functions T k,ν+1
RRn (r), . . . , T k,ν+1

ϕϕ2n (r) are constructed by the same formulas as at k = 2, but the
constants G2 and m2 in these formulas should be replaced by the constants G1 and m1, respectively.

Substituting Eqs. (11), (13), and (14) into Eqs. (10), we obtain the following systems of equations for
determining the constants Aν+1

n , Bν+1
n , Cν+1

n , and Dν+1
n :

−4G1(m1 + 1)Aν+1
0 /m1 + 4G2D

ν+1
0 = σν

0 ,

2(m1 − 2)Aν+1
0 /m1 − Dν+1

0 = −ξν
0 , ν = 1,∞;

(15)

−2G1(n + 1)(n2 − n − 2 − 2/m1)Aν+1
n − 2G1n(n − 1)Bν+1

n

− 2G2n(n2 + 3n − 2/m2)Cν+1
n + 2G2(n + 1)(n + 2)Dν+1

n = σν
n,

−2G1(n2 + 2n − 1 + 2/m1)Aν+1
n − 2G1(n − 1)Bν+1

n + 2G2(n2 − 2 + 2/m2)Cν+1
n − 2G2(n + 2)Dν+1

n = τν
n , (16)

−(n + 1)(n − 2 + 4/m1)Aν+1
n − nBν+1

n + n(n + 3 − 4/m2)Cν+1
n − (n + 1)Dν+1

n = −ξν
n,

−(n + 5 − 4/m1)Aν+1
n − Bν+1

n + (−n + 4 − 4/m2)Cν+1
n + Dν+1

n = −ην
n,

n = 1,∞, ν = 1,∞.

When these constants are determined from systems (15) and (16), the direct solution for the (ν + 1)th iteration is
constructed by Eqs. (13) and (14).

At k = 1 and k′ = 4 − k = 3, the functions in the right sides of Eqs. (9) should be calculated by Eqs. (3),
(4), (13), and (14) with k = 2, but the constants G2 and m2 in Eqs. (3) and (14) should be replaced by the
constants G1 and m1, because we consider the fields of stresses and displacements, which are external to the drop
and have the shear modulus and Poisson’s number of the material of the other drop.

Thus, the algorithm for calculating the tensors T k and the vectors uk (k = 1 and 2) is constructed.
2. Analytical Approximation. It is shown below that the z-projection of the force acting on the drop at

the initial stage of its acceleration (see Fig. 1) is

F ′
z = Fz1 + π2R2

0k0,

where

Fz1 = −2πR2
0

π∫

0

T 2
RR cos θ sin θ dθ (17)

at R = R0 is the z-projection of the force generated by the normal stresses on the drop surface and k0 is the positive
shear stress equal to the yield point of the matrix. It is known from the experiment that the force F ′

z at r1 < 3.2 is
negative, i.e., the drops are attracted to each other. Let us estimate the quantity Fz1 analytically. For this purpose,
we put series (2) into correspondence to the series

Fz1 =
∞∑

ν=1

∞∑

n=0

F ν
z1n,

where the subscript n indicates the number of the harmonic in the expansion of the solution with respect to the
Legendre polynomials, and calculate the highest term of this series.

Substituting Eq. (3) into Eq. (9) with k = 2, we obtain

T 2,1
RR ref(1, θ) = 2D1

0G2

(
2 − 3r2

1 sin2 θ

r2
1 + 1 − 2r1 cos θ

) 1
(r2

1 + 1 − 2r1 cos θ)3/2
,

T 2,1
Rθ ref(1, θ) = 6D1

0G2

( 3r2
1 sin2 θ

r2
1 + 1 − 2r1 cos θ

− 1
) 1

(r2
1 + 1 − 2r1 cos θ)3/2

.

(18)

For this solution, the integral in Eq. (17) is equal to zero. Therefore, this approximation does not yield the force
of attraction of the drops. In the next approximation, we have
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T 1,1
RR ref − T 2,1

RR ref = (G1/G2 − 1)T 2,1
RR ref, T 1,1

Rθ ref − T 2,1
Rθ ref = (G1/G2 − 1)T 2,1

Rθ ref,

u1,1
R ref − u2,1

R ref = 0, u1,1
θ ref − u2,1

θ ref = 0.
(19)

Substituting Eqs. (18) and (19) into Eq. (12), we obtain

σ1
0 = ξ1

0 = σ1
1 = τ1

1 = ξ1
1 = η1

1 = 0.

Therefore, we have

A2
0 = D2

0 = A2
1 = B2

1 = C2
1 = D2

1 = 0.

Then, we calculate the values

σ1
2 = 2D1

0G2(G1/G2 − 1)r−3
1 , τ1

2 = D1
0G2(G1/G2 − 1)r−3

1 , ξ1
2 = η1

2 = 0.

Substituting these values into system (16) and solving this system, we find

C2
2 = −5

4
m2τ

1
2

(7G2 + 8G1)m2 − 5(G2 + 2G1)
, D2

2 =
6C2

2

5
, A2

2 = 0, B2
2 =

(16
5

− 4
m2

)
C2

2 .

Using formulas (14), (13), (9), and (17), we obtain

F a
z1 = − 48πR0γ(G1/G2 − 1)(m2 − 2)(m2 + 1)r−7

1

(2m2 − 4 + (K1/K2)(m2 + 1))((7 + 8G1/G2)m2 − 5 − 10G1/G2)
. (20)

The quantity F a
z1, responsible for a certain force of attraction of the drops at G1/G2 > 1 and a sufficiently small

value of r1, yields information about the sign of Fz1.
3. Calculating the Force Acting on the Drop. The matrix material is assumed to be weakly compress-

ible (the coefficient of volume compression is K2 = 2 ·109 Pa). The values of the second invariants of the strain rate
tensor and the stress tensor deviator, as well as the form of the matrix continuity equation are determined below.
As the allowance for matrix compressibility yields negligibly small corrections to the values of the corresponding
quantities, we assume that the matrix is incompressible for simplicity. (In determining the fields of stresses and
displacements in Sec. 1, the assumption about the matrix material compressibility was essential, because these fields
are identically equal to zero for an incompressible matrix material.)

The stress tensors T 1 for the drop and T 2 for the matrix on the drop surface S are related by the condition
[see Eq. (1)]

T 2 · n = (T 1 + (2γ/R0)I) · n,

where I is the unit tensor and n is the external normal to the surface S. The elasticity theory predicts that the
force acting on the drop is

F =
∫ ∫

S

T 2 · n dS =
∫ ∫

S

(
T 1 + I

2γ

R0

)
· n dS =

∫ ∫ ∫

V

(
div T 1 +

2γ

R0
div I

)
dV = 0, (21)

because

div T 1 = 0

by virtue of the equilibrium equations; the divergence of the unit tensor I is also equal to zero. In Eq. (21), V is
the volume occupied by the drop. The transition from the surface integral to the volume integral is performed by
the Gauss–Ostrogradskii formula.

Let us consider equality (21) in a cylindrical coordinate system (r̃, ϕ, z) related to the spherical coordinate
system (R, θ, ϕ) introduced in Sec. 1:

r̃ = R sin θ, z = −R cos θ.

Then, we obtain

F = (0, 0, Fz),

where

Fz = Fz1 + Fz2 = 0, (22)
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Fz1 and Fz2 are the z-projections of the integral of the normal and shear stresses, respectively, over the drop surface:

Fz1 = −2πR2
0

π∫

0

T 2
RR cos θ sin θ dθ, Fz2 = 2πR2

0

π∫

0

T 2
Rθ sin2 θ dθ, R = R0. (23)

Let the medium be plastic, i.e., possess a certain yield point k0. The simplest model of such a medium is
Bingham’s model [6, 7]. As previously, we assume that the drop is an elastic solid if its yield point is rather high.
In such a model, the domain occupied by the matrix is divided into two parts: “liquid” subdomain where the value
of |D| is rigorously greater than zero (|D|2 =

∑

i,j

D2
ij ; D is the strain rate tensor) and “solid” subdomain where

|D| ≡ 0. In this case, the stress tensor has the form

P = −pI + s,

where p is the hydrodynamic pressure, I is the unit tensor, and s is the deviator of the tensor P . The following
relation between s and D is postulated:

sij = (2ρ0ν0 +
√

2 k0/|D|)Dij (24)

(ρ0 and ν0 are the density and kinematic viscosity of the matrix material). Raising Eq. (24) to the second power,
performing summation with respect to the subscripts i and j, and canceling the necessary terms at |D| → 0, we
obtain the Mises yield condition satisfied on the boundary of the “liquid” subdomain:

|s|2 = 2k2
0. (25)

Here, we have

|s|2 =
∑

i,j

s2
ij .

In the axisymmetric case, Eq. (25) in the spherical coordinates acquires the form

s2
RR + s2

θθ + s2
ϕϕ + s2

Rθ + s2
θR = 2k2

0 . (26)

Let the velocity field in the matrix be identically equal to zero, but condition (26) be satisfied on a certain
part of the drop surface. As the diagonal components of the tensor s vanish in this case and the non-diagonal
components are equal to each other by virtue of tensor symmetry, Eq. (26) has the form

|sRθ| = |PRθ| = k0, θ ∈ U, R = R0,

where U is a certain set.
According to Bingham’s theory of the fluid, the stress tensor P in the “solid” subdomain can be undeter-

mined, i.e., it can be a multivalued function [6]. The shear component of the tensor P is in the range

−k0 ≤ PRθ ≤ k0, θ ∈ [0, π], R = R0.

The following question arises: How is it possible to obtain information about the properties of the function PRR(θ)
at R = R0? The following answer is proposed: As Bingham’s rheological model of the fluid includes an elastic
element represented in rheological schemes by a spring [8], the normal stresses on the drop surface in a quiescent
matrix should be obtained by solving the problem of the elasticity theory, which was considered in Sec. 1:

PRR = T 2
RR, θ ∈ [0, π], R = R0. (27)
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Let us assume that the drop starts to move. The strain rate tensor is not changed when we pass to the
moving coordinate system; hence, the drop motion can be considered in a spherical coordinate system fitted to the
drop center. In the axisymmetric case, we have the following non-zero components of the strain rate tensor [9]:

DRR =
∂u

∂R
, DRθ = DθR =

∂v

∂R
− v

R
+

1
R

∂u

∂θ
,

Dθθ =
1
R

∂v

∂θ
+

u

R
, Dϕϕ =

v

R
cot θ +

u

R

(28)

(u and v are the velocity components in the directions R and θ, respectively).
Considering the problem in the drop-fitted coordinate system, we can conclude that the no-slip conditions

should be satisfied on the drop surface:

u = v = 0 at R = R0, θ ∈ [0, π]. (29)

These conditions and the continuity equation

∂u

∂R
+

1
R

∂v

∂θ
+

2u

R
+

v

R
cot θ = 0

yield

∂u

∂R
= 0, R = R0, θ ∈ [0, π]. (30)

Substitution of Eqs. (29) and (30) into Eq. (28) yields the following equalities on the drop surface:

DRR = Dθθ = Dϕϕ = 0, DRθ = DθR =
∂v

∂R
.

Then, we have

|D| =
(∣∣∣

∑

i,j

D2
ij

∣∣∣
)1/2

=
√

2
∣∣∣
∂v

∂R

∣∣∣,

i.e., the tensor P has the components

PRR = Pθθ = Pϕϕ = −p,

PRθ = PθR = 2ρ0ν0
∂v

∂R
+ k0 sign

( ∂v

∂R

)
≡ sRθ, R = R0, θ ∈ [0, π].

(31)

Let us introduce the function ξ(t) as the fraction of non-broken molecular bonds, which make the matrix
acquire the properties of a solid, and assume that

PRR = ξ(t)T 2
RR − (1 − ξ(t))p, θ ∈ [0, π], R = R0.

At the initial stage of drop acceleration, when the function ξ(t) is close to unity, equality (27) is satisfied.
We can demonstrate that we have sign (∂v/∂R) = − sign (Fz1) [the quantity Fz1 is determined by Eq. (23)] is there
are no reverse flow regions on the drop surface. Then, at the initial stage of drop acceleration, when the velocities
are still rather low, equality (31) acquires the form

PRθ = −k0 sign (Fz1).

The force induced by shear stresses is

F ′
z2 = 2πR2

0

π∫

0

PRθ sin2 θ dθ = −π2R2
0k0 sign (Fz1).

Thus, if the drop starts to move, then the force acting on the drop is determined by the formula

F ′
z = Fz1 − π2R2

0k0 sign (Fz1).

The terms in the right side of this expression have different signs. If the first term dominates, then the drop is
accelerated; if the second term dominates, then the drop is decelerated. In the latter case, minor deviations of
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the drop from the equilibrium conditions give rise to a force returning the drop to a position corresponding to the
previous equilibrium state. Therefore, the drop can start to move only if the following inequality is valid:

|Fz1| > π2R2
0k0.

Thus, the force F ′
z acting on the drop at the initial stage of its acceleration is determined as

F ′
z =

{
0, |Fz1| ≤ π2R2

0k0,

Fz1 − π2R2
0k0 sign(Fz1), |Fz1| > π2R2

0k0.
(32)

4. Results of Calculations. A computer code was written for implementing the algorithm described
above. To test this code, we calculated the errors of satisfaction of difference analogs of the equilibrium equations
in stresses and displacements at certain points of the inner and outer parts of the drop and on the drop boundary.
For the step in terms of r equal to 0.0001 and the step in terms of θ equal to π/10,000, 30 harmonics, 20 iterations
at r1 = 3.2, K1 = 1/6 · 1010 Pa, K2 = 2 · 109 Pa, m1 = 4, m2 = 2.6, G1 = 109 Pa, G2 = 5 · 108 Pa, R0 = 0.005 m,
and γ = 0.02 N/m (the choice of these values of parameters is explained below), the errors of satisfaction of the
equilibrium equations in stresses normalized to the maximum of the function |T 2

RR| varied from 10−11 to 10−7, and
the errors of satisfaction of the equilibrium equations in displacements normalized to the maximum of the function
|u2

R| varied from 10−10 to 10−5. The greater values in the latter case could be attributed to the higher order of
the equilibrium equations in displacements, as compared with the equilibrium equations in stresses. Integrals (12)
were calculated by Simpson’s rule with 2000 divisions of the segment [0, π]. The calculated errors of satisfaction
of conditions (1), which were normalized to the maximums of the corresponding functions, were within the range
from 10−11 to 10−9. We also calculated the error of satisfaction of the condition of the zero sum of the integrals of
the normal and shear stresses over the drop surface [see Eqs. (22) and (23)] and the error of calculating the value
of Fz1 with the use of two iterations and three harmonics (zeroth, first, and second), as compared with the error
arising in calculations by Eq. (20). Both errors were equal to 5 · 10−12.

To perform these calculations, we had to define the yield point of the matrix k0, the coefficients of volume
compression Kk, the shear moduli Gk, and Poisson’s numbers (inverse to Poisson’s ratios) mk ∈ [2,∞) (with mk = 2
corresponding to an incompressible medium) of the drop material (k = 1) and the matrix material (k = 2). These
quantities are not independent because they are related by equalities (5).

Let us choose the initial data for the problem. The compressibility coefficients for water (χ2 = 5·10−5 atm−1)
and various oils were given in [10]. The compressibility coefficients for various oils at atmospheric pressure are close
to χ1 = 6 · 10−5 atm−1. Passing to the SI system of units, we use the formula Kk = 1/χk (k = 1, 2) and obtain
K1 = 1/6 · 1010 Pa and K2 = 2 · 109 Pa.

The following question arises: Which values should be set for the shear moduli and Poisson’s numbers?
Apakashev and Pavlov performed experiments to study the water flow decaying due to inertia in a cylindrical vessel
and obtained the shear modulus equal to 10−6 Pa. Romanov and Sapozhnikov [12] performed experiments aimed
at studying high-frequency (22 Hz and more) motion of a cylindrical shell made of steel foil around a motionless
cylindrical skeleton with a fluid contained in a small gap between the skeleton and the shell and without this fluid;
by comparing the amplitude–frequency characteristics of two processes, they obtained the shear moduli for water
(G2 = 18 Pa) and paraffin oil (G1 = 31 Pa). Thus, the shear modulus of water substantially depends on the
character of the process under study: as the frequency of oscillations is increased from a value close to zero to
22 Hz, the value of G2 increases by more than seven orders. Note that the processes with strains of the order of
unity were studied in both experiments. In the problem of approaching drops, the displacements due to surface
tension are of the order of the size of one molecule, and the corresponding strains range from 10−8 to 10−7, i.e., are
extremely small. Even for G2 = 18 Pa, Eq. (5) yields m2 − 2 ≈ 10−8. Then, for γ = 0.02 N/m [3], R0 = 0.005 m,
r1 = 3.2, and G1/G2 = 2 (approximate value for the data of [12] given above), Eq. (20) yields Fz1 ≈ −2.5 ·10−15 N.
It follows from Eq. (32) that

Fz1 + π2R2
0k0 < 0.

It is known from the experiment that the drops become attracted to each other at r1 = 3.2. Then, we obtain
the estimate

k0 < −Fz1/(π2R2
0) ∼ 10−11 Pa.
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Meanwhile, it is known from other experiments that k0 lies in the range from 10−4 to 10−3 Pa. To explain
experimental data, therefore, the value of m2 − 2 should be of the order of unity. At such small strains, the water–
alcohol solution behaves as a usual solid. These conclusions are also valid for the drop material. Poisson’s numbers
typical for solids are 1/ν � 3–4.

We use the above-listed values of r1, R0, γ, and G1/G2 as the initial data and denote the upper boundary
of the values of k0 at which F ′

z < 0 by

k0 max = −Fz1/(π2R2
0). (33)

Defining mk, we can find the value of m3−k from Eq. (5):

m3−k =
(
2

Gk

G3−k

K3−k

Kk
− mk − 2

mk + 1

) / ( Gk

G3−k

K3−k

Kk
− mk − 2

mk + 1

)
, k = 1, 2. (34)

If GkK3−k/(G3−kKk) < 1, the following condition should be satisfied for a positive value of m3−k to exist:

mk < mk max, mk max =
(
2 +

Gk

G3−k

K3−k

Kk

) / (
1 − Gk

G3−k

K3−k

Kk

)
.

Figure 2 shows the dependence of k0 max on m2 obtained by calculations with the data indicated above. The
value of m2max is 29/7. The values of m1 were calculated by Eq. (34). The calculation was performed from the
value m2 = 2.1. In the entire examined range of m2, it is seen that the value of k0 max is within the range consistent
with the experimental data (from 10−4 to 10−3 Pa), and the analytical approximation yields the value of k0 max,
which is smaller than the numerical value by less than a factor of 2. The error of calculating k0max due to the
neglect of terms with ν ≥ 6 is about 10−3%.

In further calculations, we used m2 = 2.6 (thereby, m1 = 4, k0 max = 4.529 · 10−4 Pa, G2 = 5 · 108 Pa, and
G1 = 109 Pa) and k0 = 0.0003 Pa (mean geometric value between the minimum and maximum values).

Figure 3 shows the functions Fz1, F ′
z , and F a

z1 [see Sec. 3 and Eq. (20)] versus r1. At r1 ≈ 3.36, we have
F ′

z = 0, i.e., the drop cannot start moving at this value of r1. With increasing r1, the ratio Fz1/F a
z1 decreases from

Fz1/F a
z1 = 4 at r1 = 2 to Fz1/F a

z1 = 1.47 at r1 = 4.
The effect of the ratio G1/G2 on the considered characteristics was studied. At G1/G2 > 1, we had m2 = 2.6,

and the value of m1 was calculated by Eq. (34). At G1/G2 < 1 (in [12], such a ratio was obtained for hydraulic oil
with G1 = 13 Pa and water with G2 = 18 Pa), we had m1 = 2.6, and the value of m2 was calculated by Eq. (34).
In the first case, the following condition should be satisfied for the value of m1 to be positive:

G1

G2
<

K1

K2

m2 + 1
m2 − 2

= 5.

In the second case, the following condition should be satisfied for m2 to be positive:
G1

G2
>

K1

K2

m1 − 2
m1 + 1

=
5
36

.

Figure 4 shows the function k0 max [see Eq. (33)] determined numerically on the basis of the model developed
in Sec. 1 (solid curve) and analytically by Eq. (20) (dot-and-dashed curve) versus the ratio G1/G2 ∈ [1, 5) at
r1 = 3.2. For G1/G2 ∈ [1.2, 4.5], the value of k0max is seen to be in the range from 10−4 to 10−3 Pa corresponding
to experimental data. The analytical values of k0 max are smaller than the values of k0 max obtained by numerical
calculations by less than a factor of 2.

Figure 5 shows the functions Fz1, F ′
z , and F a

z1 versus the ratio G1/G2 ∈ [0.2, 5) at r1 = 3.2, k0 = 0.0003 Pa,
and the values of m1 and m2 determined by the algorithm described above. The drops are seen to diverge at
G1/G2 < 0.5 (F ′

z > 0) and to approach each other at G1/G2 > 1.7 (F ′
z < 0). At 0.5 < G1/G2 < 1.7, the drops

remain in the state at rest (F ′
z = 0). Note, if Fz1 is expanded into a series with respect to ν [see Eqs. (2)], the

terms of this series have constant signs at G1/G2 > 1 and alternating signs at G1/G2 < 1. At G1/G2 = 1, we have
Fz1 = 0, and the exact solution of the problem is obtained in one iteration.

Let us estimate the path covered by the drop and the time of drop acceleration and deceleration in one
cycle (see Introduction). It is known from the experiment that the mean velocity of the drop with a radius
of 0.005 m at r1 = 3 is Vmean = −3.68 · 10−7 m/sec. The drop density is ρ0 = 103 kg/m3, and its mass is
m = (4π/3)ρ0R

3
0 = 5.24 · 10−4 kg. The time needed for the drop to cover the distance Δz is Δt =

√
2Δz/a

(a = F ′
z/m = −2.18·10−4 m/sec2 is the drop acceleration). Then, its mean velocity is Vmean = Δz/Δt = −√

Δza/2.
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Fig. 2. Dependence of k0 max on m2: the solid and dashed curves show the results calculated by the
numerical model and by the approximate formula (20), respectively.
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Fig. 3. Dependences of the functions Fz1 (solid curves), F ′
z (dashed curves), and F a

z1 (dot-and-
dashed curves) on r1: (a) the drops touch each other; (b) the distance between the drop peripheries
is equal to two drop radii.

Let us find Δz from the condition that implies that the mean velocity of the drop at r1 = 3 is equal to the
experimental value: Δz = 2V 2

mean/a = −1.24 · 10−9 m. The drop acceleration at the initial stage of its deceleration
with the pressure gradient being neglected is a′ = π2R2

0k0/m = 1.41 · 10−4 m/sec2. The time of drop deceleration
is Δt′ = −2Vmean/a′ = 5.22 · 10−3 sec. The cycle duration (minus the time during which the drop is at rest, see
Introduction) is Δt + Δt′ = 8.59 · 10−3 sec.

Conclusions. An algorithm for calculating the force of interaction of two oil drops in a plastic matrix is
proposed. The normal component of the stress vector on the drop boundaries is taken from the solution of the
problem of the elasticity theory, while the shear component is determined by the plastic properties of the medium
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Fig. 4. Dependence of k0 max on G1/G2: the solid and dashed curves show the results calculated by the
numerical model and by the approximate formula (20), respectively.

Fig. 5. Functions Fz1 (solid curve), F ′
z (dashed curve), and F a

z1 (dot-and-dashed curve) versus the ratio G1/G2.

(its yield point). Based on calculations performed by the model proposed, the upper estimate of the yield point of
the matrix is obtained from the condition that the sign of the force of interaction between the drops corresponds
to their mutual attraction at the critical distance where drop approaching is observed in the experiment. With an
appropriate choice of Poisson’s number, this estimate agrees with experimental data.
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